sorting

February 11, 2026

[1]: def insertion_sort(list_to_sort): # 0(n"2)
L = list(list_to_sort)
new_list = []

while len(L) > O:
find the index of the smallest thing

min_index = min(range(len(L)), key=lambda i : L[i])

remove it from L and add it to new_list
new_list.append(L.pop(min_index))

return new_list
[2]: import random
from time import time

import math

[3]:|L = [random.randint(1,1_000_000) for n in range(10_000)]

[4]: tt = time()
R1 = insertion_sort(L)
print (time()-tt)

2.3219053745269775

[5]:tt = time()
R2 sorted (L)
print (time()-tt)

0.0008757114410400391

[6]: def merge_sort(L):
assume L ts a list of numbers
output will be a sorted list of those numbers

base case: a list of length 1 %s already sorted
if len(L) <= 1:
return L

[7]:

[8]:
[8]:

[9]:

split the list (roughly) in half
mid_point = math.ceil(len(L)/2)
left_half = L[:mid_point]
right_half = L[mid_point:]

recursively apply the function to the two halfs (divide)
LS = merge_sort(left_half)
RS = merge_sort(right_half)

time to conquer
full_list = []

while the two halves still have something left
while len(LS) + len(RS) > O:
either LS[0] or RS[0] is the smallest of all elements
i2n LS and RS. Find <t, remove it from its list, and
add 1t to full_list
"if [list]" means "if the list is nmon-empty".
same as "if len([list]) > 0"
if LS:
if RS:
if LS[0] <= RS[0]:
full_list.append(LS.pop(0))
else:
full_list.append(RS.pop(0))
else:
full list.append(LS.pop(0))
else:
full_list.append(RS.pop(0))
return full list

tt = time()
R3 = merge_sort(L)
print(time () -tt)

0.023035049438476562
R3 == R2

True

times = []

for p in range(1,20):

L = [random.randint(1,1000000) for n in range (2**p)]

tt = time()
R = insertion_sort(L)

times.append(time ()-tt)

print (f"{2*x*p} {time()-tt}")
if len(times) > 1:
print (f"\t{times[-1]/times[-2]}")

2 5.245208740234375e-06
4 3.0994415283203125e-06
0.5294117647058824
8 3.814697265625e-06
1.7777777TTTTTTTTT
16 1.0967254638671875e-05
2.625
32 3.075599670410156e-05
3.0714285714285716
64 9.989738464355469e-05
3.248062015503876
128 0.000370025634765625
3.704057279236277
256 0.0014729499816894531
3.9780927835051547
512 0.006085872650146484
4.133138969873664
1024 0.030744075775146484
5.052786268516342
2048 0.09838628768920898
3.2003924397186223
4096 0.38050079345703125
3.867499981824747
8192 1.5638058185577393
4.109896486039401
16384 6.210069894790649
3.9711307981959627
32768 24.940457344055176
4.016132701196906
65536 100.17861104011536
4.016711595898216

KeyboardInterrupt Traceback (most recent call last)
In[9], line 6
3 L = [random.randint(1,1000000) for n in range (2**p)]
5 tt = time()
-———> 6 R = insertion_sort (L)
7 times.append(time()-tt)
9 print (f"{2**p} {time()-ttl}")

In[1], line 7, in (list_to_sort)
3 new_list = []
5 while len(L) > O:

6 # find the index of the smallest thing
-——>7 min_index = min(range(len(L)), key=lambda i : L[i])
9 # remove it from L and add it to new_list
10 new_list.append(L.pop(min_index))
In[1], line 7, in (1)

3 new_list = []
5 while len(L) > O:

6 # find the index of the smallest thing
-——=>7 min_index = min(range(len(L)), key=lambda i : L[il])
9 # remove it from L and add it to new_list
10 new_list.append(L.pop(min_index))
KeyboardInterrupt:

[10]: times = []
for p in range(0,7):
L = [random.randint(1,1000000) for n in range(10%*p)]

tt = time()
R2 = merge_sort(L)
times.append (time () -tt)

print (£"{10%*p} {time()-tt}")
if len(times) > 1:
print (f"\t{times[-1]/times[-2]}")

1 3.314018249511719e-05

10 1.4066696166992188e-05
0.43703703703703706

100 0.00010395050048828125
7.389830508474576

1000 0.0014007091522216797
13.474770642201834

10000 0.024042129516601562
17.162212765957445

100000 0.9299261569976807
38.68346094338874

KeyboardInterrupt Traceback (most recent call last)
In[10], line 6
3 L = [random.randint(1,1000000) for n in range(10**p)]
5 tt = time()

----> 6 R2 = merge_sort(L)
7 times.append(time()-tt)
9 print(f"{10*%xp} {time()-tt}")

In[6], line 33, in (L)
31 full_list.append(LS.pop(0))
32 else:
---> 33 full_list.append(RS.pop(0))
34 else:
35 full_list.append(LS.pop(0))
KeyboardInterrupt:

[11]: times = []
for p in range(1,8):
L = [random.randint(1,1000000) for n in range(10**p)]

tt = time()
R3 = sorted(L)
times.append(time ()-tt)

print (£"{10**p} {time()-tt}")
if len(times) > 1:
print(f"\t{times[-1]/times[-2]}")

10 0.0002009868621826172
100 6.9141387939453125e-06
0.029940119760479042
1000 6.604194641113281e-05
10.92
10000 0.0007967948913574219
12.227106227106226
100000 0.010386943817138672
13.047633313361294
1000000 0.13788390159606934
13.278534199710696
10000000 1.866286039352417
13.535305713100014

[]1:

